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Abstract. Potential flows in steady-state conditions are studied in detail in the framework 
of the plane Broadwell discrete-velocity model of the Bollzmann equation. It is shown that 
explicit em1 solutions with physical meaning can be obtained in terms of elementary or special 
functions. Previously discovered analytical incompressible flows are recovered as particular 
cases. New solutions for compressible flows are classified and discussed. 

1. Introduction 

The first discrete-velocity models of the Boltzmann equation were proposed by Carleman [ 11 
and Broadwell [2]. This approach to problems of kinetic theory was essentially developed 
and generalized in the 1970s [3,4] and has become very popular in the last ten years. In 
spite of their visible simplicity, discrete-velocity models are sufficiently complicated from 
a mathematical point of  view (see [5] for a review). There are many open problems, even 
for the quite simple and popular Broadwell model, and some of these problems can be 
clarified on the basis of  exact solutions. The present paper is devoted to the construction 
and investigation of a new class of exact solutions of the 2D stationary Broadwell model. 
The first solutions for this model were derived in [6] as particular cases of  time-dependent 
solutions. It should be noted that such solutions, together with several exact solutions 
determined by Comille for other discrete-velocity models [7], and other earlier discovered 
solutions to the Carleman model [8,9], definitely have common mathematical structure. In 
fact, the majority of the known exact solutions for discrete-velocity models belong to the 
same class. This was discussed in detail in [lo], where other possibilities for constructing 
exact solutions were also indicated, in particular stationary potential flows for the Broadwell 
model. In the present paper, we realize that idea and construct a wide class of new exact 
solutions. It is shown that some of our solutions correspond to incompressible flows which 
have been investigated in detail in [lO,ll]. On the other hand, we provide below more 
complex classes of exact solutions corresponding to compressible Rows of the Broadwell 
gas. The structure of these new solutions and their properties are quite different from those 
of the other already known exact solutions. 

2. Stationary potential flows for the plane Broadwell model 

We consider the four-velocity plane Broadwell-model equations in dimensionless form with 
velocities rotated by ( 2 j  - 1)z/4, j = 1.2,3,4, with respect to the x axis, and common 
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unit speed for the densities f , ( x ,  y )  in steady-state conditions 

A V Bobylev and G Spiga 

For the new dependent variables 

P = fi + f 2  + f 3  + f4 Y = f l  - f2+ f3 - f4 (2.2) 
1 1 

U = -(f1 - f 2  - f3 + f4) U = -(f1 + f2 - f3 - f4) (2.3) f i  f i  
where p is the total density and (U. U) is the mean velocity vector, the governing equations 
decouple as 

PL + py = 0 PI + py = 0 

P ( X ,  Y )  * A(x + Y) + B ( x  - Y )  

ux + uy = 0 

P ( X ,  Y )  = -A (x  + Y )  + B ( x  - Y )  

VI + uy = 2uu - pp. (2.4) 

(2.5) 

The general solution of the first two equations has the form 

where A = fz + f4 and B = fi + f3 are arbitrary smooth non-negative functions. Then 

(2.6) 2 p p  = -Az(X + y )  + B ( X  - y )  = -2S(x, y) S,, = SYy.  

We now introduce the stream function W ( x , y )  by [I21 

U = V y ( x ,  Yf U = -Yx(x, y )  (2.7) 

and restrict ourselves to the so-called potential flows. Let Q ( x ,  y )  be a potential function 
for our system, i.e. Q satisfies the Laplace equation Qxx + Qyy = 0 and 

U = Q P , ( x , y )  U = Q y ( x ,  y ) .  (2.8) 

The complex function of a complex variable 

f ( 2 )  = Q ( x ,  Y )  + iW(x, y )  z = x + iy (2.9) 

is analytic, since Q, and \Ir are conjugate harmonic functions, and the velocity components 
are defined by U - i v  = f'(z), or 

U = Re f'(z) U = - Im f'(z). (2.10) 

The last equation in (2.4) can now be written as 

oxy = QIQ,, + e (2.1 1) 

which, since [f'(z)]* = Q; - 0; - iQxQy and f"(z) = - iQxy, takes the form 

ImIf"(2) - f ( f ' ( 2 )YI  = -S(x, y )  (2.12) 
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so that the function e ( x .  y )  also satisfies the Laplace equation as the imaginary part of an 
analytic function. This implies that the equations e,, = e,, = 0 are easily integrated to 
yield 

e@, y )  = Im(a2  + BZ + y )  (2.13) 

where a:, B ,  y are arbitrary (complex) constants and Im a: = 0. 

and B are determined as 
Setting ,9 = @I + ih. y = y~ + yz, and bearing equation (2.6) in mind, the functions A 

A*(x) = ax2 + (PI + &)x + yz + N 

where N is an additional real integration constant. 
In conclusion, by analytic continuation, the most general class of potential flows for 

the stationary Broadwell-model equations (2.1) are described by the nonlinear first-order 
equation in the complex plane 

B 2 b )  = axz + (PI - BZ)X - ~2 + N (2.14) 

f " ( 2 )  - ;[ f'(z)12 + ( a 2  + pz + v) = 0 (2.15) 

which can be reduced to the linear equation 

F"(z) - +(a2 + Bz + y ) F ( z )  = 0 (2.16) 

by the substitution 

f ( z )  = -2lnF(z). (2.17) 

The general solution of equation (2.16) can be expressed in terms of elementary or special 
functions [13], so that a wide class of analytical solutions can be obtained. The distribution 
function follows as 

u ( x ,  Y )  + N x ,  Y )  
2 8  

fi ( x ,  Y )  = +B(x - Y )  + 

(2.18) 

3. Positivity conditions 

It is clear that only non-negative densities fi(1, y ) .  j = 1,2,3,4, have a physical meaning. 
On the other hand, our solutions depend on the six real parameters in a, 0, y ,  N and on two 
complex integration constants from the solution of equation (2.16) for F .  It is shown here 
that, for any given domain D in the complex plane where the function f is analytic, the 
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previous free parameters can be chosen in such a way that positivity is fulfilled everywhere 
in D. 

Rrst of all, the functions A’ and BZ in (2.14) must be non-negative. This can be 
achieved by taking N positive and large enough if D is bounded. The latter restriction can 
even be relaxed when a > 0, or when a = @ = 0. Moreover, due to equation (2.18). the 
functions u(x ,  y )  and v(x ,  y) have to satisfy the following conditions 

A V Bobylev and G Splgu 

(U + U)’ < 2BZ(x - y )  (U - U)’ < 2AZ(x + y ) .  (3.1) 

Let f(z) be a solution of (2.15). There then exists a positive constant M such that 

lf’(z)I2 < M Vz E D. (3.2) 

By the same positivity argument as before, and with the same possible restrictions, we can 
always choose the number N sufficiently large to satisfy the stronger conditions 

B*(x - y )  M A’(x + y )  > M x’+ iy E D. (3.3) 

Then, the positivity conditions (3.1) will also be satisfied for any z E D because of the 
standard estimate 

(U U)Z < Z(u2 + 3) = 21f‘(Z)I* < 2M. (3.4) 

Thus, we obtain positive solutions to the Broadwell model for any given solution f(z)  of 
equation (2.15). Condition (3.2) for the analytic function f ( z )  is not valid near singular 
points (including z = 00). so that these points should be considered separately for each 
specific function f ( z ) .  It is important to stress, however, that for any bounded open 
domain D and for any given E z 0, we can choose M in (3.2) sufficiently large to 
satisfy equation (3.2) itself for all z E D with the exception of a finite number p of 
small neighbourhoods Iz - zkl c 6 of the singular points zk E E, k = 1,2, . . . , p of the 
function f(z). 

4. Exact solutions and their classilicalion 

We consider equation (2.16) in three different cases: a = ,5 = 0, y # 0; a = y = 0, 
@ # 0; and @ = 0, a # 0. It is clear that the general case can be reduced to one of these 
cases by a substitution z = i + constant. 

The simplest case is a = @ = 0, y # 0, and corresponds to incompressible flows 
(p  = constant) of the Broadwell gas. We put y = 26’ and obtain the general solution of 
(2.16). f(z)  = -2In[sinh6(z+zo)l+constant, f’(z) = -26cothS(z+zo). It is easily seen 
that, by a rigid translation and rotation of the (x .  y) plane, we can always refer to the case 
when S is real and positive and zo = 0, and that, by a further coordinate scaling, we may 
even take 6 = 1. In fact, upon the substitution 

(4.1) 
6 

E + iir = -(U + iu) i = 6(z + zo) 
161’ 

we obtain 
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which is a well known solution [5,11] that corresponds to earlier solutions [8,91 for the 
Carleman model. It is clear that even the trivial solution f = -21nz + constant, relevant 
to the limiting case y = 0, yields the non-trivial Bow described by 

(4.3) 

The solutions (4.2), (4.3) and related boundary-value problems were investigated in detail 
in the literature, and, therefore, we do not discuss them here. We note only that (4.2), 
restricted to f > 0 and e n, corresponds to gas outflow from a half-infinite channel 
through an infinitely small hole in its end-wall, with singular point (sink) at (0,O) and 
stagnation points at (0, in). The solution (4.3), restricted to x > 0, describes the limiting 
case of gas outflow from a half-space, with sink at (0,O). It is worth remarking that the most 
general incompressible potential flow for the Broadwell model is amenable, by translations 
and rotations, to the above physical situations. 

Let us now pass to the cases when 01 or p is different from zero, leading thus to 
compressible flows, for which, to our knowledge, exact solutions of the Broadwell model 
do not exist in the literature. For 01 = y = 0, p # 0, equation (2.16) can be cast, by 
standard transformations, as a Bessel equation, and, with p = 2J2, the general solution has 
the form 

F(z) = 4[C111/3($Z3/~) + C21-1/3(~SZ3/~)I (4.4) 

where is the well known modified Bessel function of the first kind [13]. We can also 
use the equivalent representation in terms of Airy functions. In spite of fractional powers, 
F turns out to be an entire function of z .  By a suitable rotation and rescaling of the ( x ,  y) 
plane, we can always reduce the analysis to the case 6 = 1 (new variables will be labelled 
with the old symbols, for convenience). For brevity, we consider here only the case Cz = 0. 
Similar conclusions hold when CI = 0 (notice that the results are independent of CI, or of 
C,, respectively). Then, apart from a non-essential multiplicative constant, F ( z )  is given 
by U31 

(4.5) 

where Ai = -(3~2'~'/2)' and z:'), m = 1.2, , . . , is the countable sequence of the zeros 
of the function Z-'/~JI/~(Z). Thus, the solution can be written as 

so that we obtain, in this case, a complex flow with an infinite number (in the whole plane) of 
poles zi = Am, z,' = A, exp(Hxi/3), m = 1,2. . . . , in addition to z = 0. The behaviour 
near each pole can be described by standard methods [12]. Regarding the density, it is 
given by 

(4.7) 

and is positive in the quadrant - ( N / 2 )  - x e y < (N/2) + x ,  increasing when x tends to 
+m. 
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In the case ,E = 0, (Y # 0, the general solution of equation (2.16) can be written in 
terms of the confluent hypergeometric function F1. More precisely 

exp(&z2 /2d5)~(z )  ~~ 

is given by 

We may take 01 = 2, put y = 2h and consider cases with either C' = 0 or C" = 0 for which 
the analytical solution becomes explicit. Note that the particle number density is given by 
( 2 5 )  and (2.14), i.e. 

p ( x ,  y) = J2(x - y)2 + N - 2 I m h  + J2(x + y I z +  N + 2 I m h  (4.9) 

where N is an arbitrarily large positive number, increasing when x or y increase, We 
describe here some simple cases, resorting to the well known formulae [I31 (multiplicative 
constants have no influence on U and U) 

IF1 (-n, + ; x 2 ) a H d x )  X l F I  ( - n , ; ; x ' ) a H 2 n + I ( x )  (4.10) 

n = 0, 1, . . . , H,(x) being the classical mth Hermite polynomial. The two linearly- 
independent solutions in (4.8) are just 

It is sufficient to consider the case Reh  < 0, because the substitution 2 = -A, i = iz does 
not change equation (2.16) when ,E = 0. There is, thus, the following countable sequence 
of solutions involving polynomials 

A = -(h + I )  F,(z) = Hn(z)exp(-zZ/2) n = 0, I .  . . . (4.12) 

for which, in addition, Imh  = 0 (see equation (9)). The velocity-field components are 
defined by @.lo), which yields, in the polynomial case, 

In particular, the first few are 

U - iv =2z 

u -iu = 2 (z - :) 
u - i u = 2  z-- ( 2,:- 1) 

(4.13) 

(4.14) 
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for n = 0. 1, 2, 3, respectively. Notice that for n = 0, this is the typical textbook example 
of potential flow, where streamlines are hyperbolae and the origin is the stagnation point. In 
the other examples, this field is superimposed on increasingly complicated flows, exhibiting 
a finite number (equal to the index n )  of simple poles located at the zeros of the Hermite 
polynomial Hn (which are real). In the global field, there are n + 1 stagnation points 
corresponding to the zeros of zH,(z) -2nH,,-l(z). The first superimposed singular field just 
coincides with that already obtained in equation (4.3) for different values of the parameters. 

Finally, we can describe the elementary solutions (4.13) in terms of the usual Broadwell 
model with velocities rotated by j x / Z ,  j = 1,2,3.4,  with respect to the x axis. To this 
end, we transform equation (2.1) into new variables 

- x + y  y‘ = - , X + Y  x =- Jz Jz 
and obtain the standard stationary Broadwell equations 

(4.15) 

(4.16) 

where the prime has been omitted. In the new setting, the exact solutions (4.13) read as 

f i ( x , Y ) = m - Y + I m * ” ( z )  

(4.17) 

where z = x + iy and 

for n = 0, 1,. . . . It is remarkable that, for n = 0, we obtain a local equilibrium solution, 
which satisfies identically fi f3 = fi f4. We also note that . 

(4.19) 

where wf) is the kth zero (1 < k < n )  of the Hermite polynomial H,(x) .  The n poles 
of the exact solution (4.17) are then localized at the points wf)exp(-in/4). In particular, 
there is one pole z = 0 for n = 1, there are two at &(I  - i)/2 for n = 2, and so on. In 
general, the solution can be written as a sum of the local equilibrium solution and n terms 
which each correspond to a simple pole. Qualitatively, these solutions are similar (they 
differ only in the number of poles) to the simplest case n = 1, which is explicitly written 
below 

X 
fl ( x .  Y )  = AK7 - Y - 

(4.20) 
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For any given 6 > 0. we can always choose N = N ( c ) ,  such that f, > 0, ( j  = 1,2,3,4)  
if (x2 4. y2) > 6'. From a physical point of view, equation (4.20) describes the outflow 
through an infinitely small sink in the origin, so that the restriction ( x 2  + y') > E' amounts 
to considering the finite size of the hole. 

A V Bobylev and G Spiga 

5. Conclusions 

Thus, the complete description of stationary potential flows for the plane Broadwell model 
is given. These flows can be separated into two classes: incompressible and compressible. 
The first class corresponds to elementary transformations of already known exact solutions, 
while the solutions of the second class described above are essentially new. The most 
interesting and relatively simple solutions of this class are expressed explicitly in terms of 
elementary or special functions, and a countable set of rational solutions are described in 
section 4. We also proved that all our solutions have a physical meaning, i.e. they correspond 
to non-negative particle densities for the Broadwell model on the desired domain. A more 
detailed analysis of the physical applications and implications of this model and its exact 
solutions will be the subject of a future paper, along the lines of which discrete-velocity 
models have already been applied to fluid-dynamical problems in the literature (see, for 
instance, 1141). It is worth mentioning here, however, that the reduced dimensionality of 
our model is not an actual restriction, since it is easy to check that the more realistic three- 
dimensional Broadwell-model equations for stationary-plane flows can be reduced in the 
general case to the same equations (4.17). 
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